
Function reference
-
assert_columns() - Assert that args in ellipses are columns in
df
-
assert_columns_unique() - Assert that column names are not identical
-
assert_df() - Assert that
dfis a data frame
-
assert_error_correct_avg_trend() - If using
error_correct, then check that the columns are either in theformula_varsoraverage_cols, otherwise produce an error.
-
assert_function() - Assert that
xis a function
-
assert_group_models() - Assert if group_models TRUE then group_col not NULL
-
assert_group_sort_col() - Assert sort column for use in average trend functions
-
assert_h() - Assert that h, for forecasting, is > 0
-
assert_inla() - Assert if INLA is installed, for use in
predict_inla...()functions.
-
assert_model() - Assert that
xis a function
-
assert_numeric() - Assert numeric value
-
assert_numeric_cols() - Assert columns in
dfare numeric
-
assert_numeric_cols_avg() - Assert columns in
dfare numeric, for use with average trend functions
-
assert_string() - Assert that
xis a character vector of lengthn
-
assert_test_col() - Assert that test_col is of logical type
-
augury_add_columns() - Adds empty columns to df
-
calculate_aarr() - Extract AARR from vector of years and prevalence
-
calculate_sq_ch() - Calculate change error
-
covariates_df - Default covariates for use in augury functions.
-
error_correct_fn() - Use mean error to correct predictions
-
expand_df() - Expand input data to make explicit missing values
-
expand_df_filter() - Filter
expand_df
-
expand_df_min() - Helper for
expand_df_filter()to calculate min for keeping data
-
filter_model_data() - Filters data for modeling
-
fit_aarr_model() - Generate prediction from model object
-
fit_forecast_average_model() - Fit forecast model to averages and apply trend to original data
-
fit_forecast_model() - Fit forecast model to data
-
fit_general_average_model() - Fit general model to averages and apply trend to original data
-
fit_general_model() - Fit general model to data
-
fit_inla_average_model() - Fit INLA model to averages and apply trend to original data
-
fit_inla_model() - Fit INLA model to data
-
fit_lme4_average_model() - Fit mixed model to averages and apply trend to original data
-
fit_lme4_model() - Fit general model to data
-
forecast_series() - Forecast data series
-
get_average_df() - Produces averaged data frame that can then be passed for modelling.
-
get_forecast_data() - Get data for forecast models
-
get_formula_avg_cols() - Get variables that need to be averaged from formula.
-
get_model_data() - Minimizes dataset to data needed for modelling
-
interpolate_aarr() - Interpolate using AARR from vector of years and prevalence
-
join_covariates_df() - Join data frame with covariates data frame
-
map_model_behavior() - Catch instability of INLA
-
merge_average_df() - Merge average df with predictions with original data frame
-
merge_prediction() - Merge predicted data into data frame
-
model_error() - Get modeling error from a data frame
-
parse_formula() - Asserts formula and extract variables
-
parse_obs_filter() - Parse obs filter intro string to be evaluated
-
predict_aarr() - Use annual average rate of reduction (AARR) to predict prevalence
-
predict_average() - Use averages to impute and forecast data
-
predict_average_fn() - Impute data using simple averages
-
predict_forecast() - Use a time series model to infill and project data
-
predict_forecast_avg_trend() - Use
predict_forecaston groups to generate average trend and apply to original data
-
predict_forecast_data() - Generate prediction from model object
-
predict_general_data() - Generate prediction from model object
-
predict_general_mdl() - Use a generic R model to infill and project data
-
predict_general_mdl_avg_trend() - Use
predict_general_mdlon groups to generate average trend and apply to original data
-
predict_glm() - Use a generalized linear model to infill and project data
-
predict_glm_avg_trend() - Use
predict_glmon groups to generate average trend and apply to original data
-
predict_glmer() - Use a generalized linear mixed-effects model to infill and project data
-
predict_glmer_avg_trend() - Use
predict_glmeron groups to generate average trend and apply to original data
-
predict_holt() - Use Holt's linear trend exponential smoothing to forecast data
-
predict_holt_avg_trend() - Use
predict_holton groups to generate average trend and apply to original data
-
predict_inla() - Use Bayesian analysis of additive models to infill and project data
-
predict_inla_avg_trend() - Use
predict_inlaon groups to generate average trend and apply to original data
-
predict_inla_data() - Generate prediction from an INLA output object
-
predict_inla_me() - Use INLA for mixed effects modeling for prediction
-
predict_inla_ts() - Use INLA for time series prediction
-
predict_lm() - Use a linear model to infill and project data
-
predict_lm_avg_trend() - Use
predict_lmon groups to generate average trend and apply to original data
-
predict_lme4() - Use mixed models to infill and project data
-
predict_lme4_avg_trend() - Use
predict_lme4on groups to generate average trend and apply to original data
-
predict_lme4_data() - Generate prediction from model object
-
predict_lmer() - Use a linear mixed-effects model to infill and project data
-
predict_lmer_avg_trend() - Use
predict_lmeron groups to generate average trend and apply to original data
-
predict_nlmer() - Use a non-linear mixed-effects model to infill and project data
-
predict_nlmer_avg_trend() - Use
predict_nlmeron groups to generate average trend and apply to original data
-
predict_ses() - Use simple exponential smoothing to forecast data
-
predict_ses_avg_trend() - Use
predict_seson groups to generate average trend and apply to original data
-
predict_simple() - Use linear interpolation and flat extrapolation to infill data
-
predict_simple_fn() - Linearly interpolate data
-
probit_transform() - Probit transform bounded data in a data frame
-
probit_vec() - Probit transformation for bounded data
-
remove_groups() - Remove groups from data frame if grouped
-
scale_transform() - Scales data in a data frame
-
scale_vec() - Scale a vector
-
simple_extrap() - Helper function to do flat extrapolation
-
temp_fill() - Fills vector backwards and forward, for use prior to applying average trend
-
trim_series() - Get latest data for forecasting