Use mean error to correct predictions
Usage
error_correct_fn(
df,
response,
group_col,
sort_col,
sort_descending,
pred_col,
pred_upper_col,
pred_lower_col,
test_col,
error_correct,
error_correct_cols,
shift_trend
)
Arguments
- df
Data frame of model data.
- response
Column name of response variable.
- group_col
Column name(s) of group(s) to use in
dplyr::group_by()
when supplying type, calculating mean absolute scaled error on data involving time series, and ifgroup_models
, then fitting and predicting models too. IfNULL
, not used. Defaults to"iso3"
.- sort_col
Column name(s) to use to
dplyr::arrange()
the data prior to supplying type and calculating mean absolute scaled error on data involving time series. IfNULL
, not used. Defaults to"year"
.- sort_descending
Logical value on whether the sorted values from
sort_col
should be sorted in descending order. Defaults toFALSE
.- pred_col
Column name to store predicted value.
- pred_upper_col
Column name to store upper bound of confidence interval generated by the
predict_...
function. This stores the full set of generated values for the upper bound.- pred_lower_col
Column name to store lower bound of confidence interval generated by the
predict_...
function. This stores the full set of generated values for the lower bound.- test_col
Name of logical column specifying which response values to remove for testing the model's predictive accuracy. If
NULL
, ignored. Seemodel_error()
for details on the methods and metrics returned.- error_correct
Logical value indicating whether or not whether mean error should be used to adjust predicted values. If
TRUE
, the mean error between observed and predicted data points will be used to adjust predictions. Iferror_correct_cols
is notNULL
, mean error will be used within those groups instead of overall mean error.- error_correct_cols
Column names of data frame to group by when applying error correction to the predicted values.
- shift_trend
Logical value specifying whether or not to shift predictions so that the trend matches up to the last observation. If
error_correct
andshift_trend
are bothTRUE
,shift_trend
takes precedence.
Value
Depending on the value passed to ret
, either a data frame with
predicted data, a vector of errors from model_error()
, a fitted model, or a list with all 3.