Accelerate transfats by targeting 100 by 2025.
Usage
accelerate_transfats(
df,
ind_ids = billion_ind_codes("hpop"),
scenario_col = "scenario",
default_scenario = "default",
scenario_name = "acceleration",
start_year = 2018,
start_year_trim = start_year + 1,
end_year = 2025,
value_col = "value",
...
)
Arguments
- df
Data frame in long format, where 1 row corresponds to a specific country, year, and indicator.
- ind_ids
Named vector of indicator codes for input indicators to the Billion. Although separate indicator codes can be used than the standard, they must be supplied as a named vector where the names correspond to the output of
billion_ind_codes()
.- scenario_col
Column name of column with scenario identifiers. Useful for calculating contributions on data in long format rather than wide format.
- default_scenario
name of the default scenario.
- scenario_name
name of scenario
- start_year
Year from which the acceleration scenario begins, inclusive.
- start_year_trim
(integer) year to start trimming from.
- end_year
End year(s) for contribution calculation, defaults to 2019 to 2025.
- value_col
Column name of column with indicator values. This column will be used to return the results.
- ...
additional parameters to be passed to scenario function
See also
HPOP acceleration scenarios
accelerate_adult_obese()
,
accelerate_alcohol()
,
accelerate_child_obese()
,
accelerate_child_viol()
,
accelerate_devontrack()
,
accelerate_fuel()
,
accelerate_hpop_sanitation_rural()
,
accelerate_hpop_sanitation_urban()
,
accelerate_hpop_sanitation()
,
accelerate_hpop_tobacco()
,
accelerate_ipv()
,
accelerate_overweight()
,
accelerate_pm25()
,
accelerate_road()
,
accelerate_stunting()
,
accelerate_suicide()
,
accelerate_wasting()
,
accelerate_water_rural()
,
accelerate_water_urban()
,
accelerate_water()