Skip to contents

Accelerate hpop_tobacco by picking the best value between business as usual, halt the rise in 2018, or a custom version of scenario_percent_baseline(). The custom function is taking similar parameters to scenario_percent_baseline()'s percent_change = -30, baseline_year = 2010, but values are added to the start_year value, rather than the baseline_year values.

Usage

accelerate_hpop_tobacco(
  df,
  ind_ids = billion_ind_codes("hpop"),
  scenario_col = "scenario",
  value_col = "value",
  start_year = 2018,
  start_year_trim = start_year + 1,
  end_year = 2025,
  default_scenario = "default",
  bau_scenario = "historical",
  scenario_name = "acceleration",
  ...
)

Arguments

df

Data frame in long format, where 1 row corresponds to a specific country, year, and indicator.

ind_ids

Named vector of indicator codes for input indicators to the Billion. Although separate indicator codes can be used than the standard, they must be supplied as a named vector where the names correspond to the output of billion_ind_codes().

scenario_col

Column name of column with scenario identifiers. Useful for calculating contributions on data in long format rather than wide format.

value_col

Name of the column containing indicator value in df.

start_year

Year from which the acceleration scenario begins, inclusive.

start_year_trim

(integer) year to start trimming from.

end_year

End year(s) for contribution calculation, defaults to 2019 to 2025.

default_scenario

name of the default scenario.

bau_scenario

name of scenario to be used for business as usual. Default is historical.

scenario_name

name of scenario

...

additional parameters to be passed to scenario function

Details

Runs:

  • custom scenario_percent_baseline (see above).

  • scenario_bau(df, small_is_best = TRUE,...)

  • scenario_halt_rise(df, baseline_year= 2018, small_is_best = TRUE,...)

Then picks the best result between the three scenarios.