Accelerate fuel by keeping business as usual for high income countries (HIC) (according to the World Bank), and by aiming at the best rate of change between 2013 and 2015 in the region for Lower-middle income countries (LMC), Low-income countries (LIC), and for unclassified countries.
Usage
accelerate_fuel(
df,
ind_ids = billion_ind_codes("hpop"),
scenario_col = "scenario",
default_scenario = "default",
bau_scenario = "historical",
scenario_name = "acceleration",
...
)
Arguments
- df
Data frame in long format, where 1 row corresponds to a specific country, year, and indicator.
- ind_ids
Named vector of indicator codes for input indicators to the Billion. Although separate indicator codes can be used than the standard, they must be supplied as a named vector where the names correspond to the output of
billion_ind_codes()
.- scenario_col
Column name of column with scenario identifiers. Useful for calculating contributions on data in long format rather than wide format.
- default_scenario
name of the default scenario.
- bau_scenario
name of scenario to be used for business as usual. Default is
historical
.- scenario_name
name of scenario
- ...
additional parameters to be passed to scenario function
Details
Runs:
scenario_bau(df, small_is_best = FALSE,...)
for HIC,scenario_best_in_region(df, target_year = 2018, baseline_year = 2013, small_is_best = FALSE,...)
for other income groups.
See also
HPOP acceleration scenarios
accelerate_adult_obese()
,
accelerate_alcohol()
,
accelerate_child_obese()
,
accelerate_child_viol()
,
accelerate_devontrack()
,
accelerate_hpop_sanitation_rural()
,
accelerate_hpop_sanitation_urban()
,
accelerate_hpop_sanitation()
,
accelerate_hpop_tobacco()
,
accelerate_ipv()
,
accelerate_overweight()
,
accelerate_pm25()
,
accelerate_road()
,
accelerate_stunting()
,
accelerate_suicide()
,
accelerate_transfats()
,
accelerate_wasting()
,
accelerate_water_rural()
,
accelerate_water_urban()
,
accelerate_water()