@description
Usage
accelerate_espar(
df,
value_col = "value",
ind_ids = billion_ind_codes("hep"),
scenario_col = "scenario",
start_year = 2018,
baseline_year = 2018,
end_year = 2025,
default_scenario = "default",
scenario_name = "acceleration",
...
)
Arguments
- df
Data frame in long format, where 1 row corresponds to a specific country, year, and indicator.
- value_col
Column name of column with indicator values.
- ind_ids
Named vector of indicator codes for input indicators to the Billion. Although separate indicator codes can be used than the standard, they must be supplied as a named vector where the names correspond to the output of
billion_ind_codes()
.- scenario_col
Column name of column with scenario identifiers. Useful for calculating contributions on data in long format rather than wide format.
- start_year
Base year for contribution calculation, defaults to 2018.
- baseline_year
Year from which the scenario is measured. Defaults to
start_year
- end_year
End year(s) for contribution calculation, defaults to 2019 to 2025.
- default_scenario
name of the default scenario.
- scenario_name
Name of the scenario. Defaults to scenario_percent_change_baseline_year
- ...
additional parameters to be passed to scenario function
Details
accelerate_espar()
accelerate espar by aiming at the best value between the regional average
(WHO regions) and the value last year of the last year with complete espar
data (with categories and sub-categories).
See also
HEP acceleration scenarios
accelerate_cholera_campaign()
,
accelerate_detect()
,
accelerate_measles_routine()
,
accelerate_meningitis_campaign()
,
accelerate_polio_routine()
,
accelerate_yellow_fever_campaign()