Trim values
Usage
trim_values(
df,
col,
value_col = "value",
baseline_col = value_col,
trim = TRUE,
small_is_best = FALSE,
keep_better_values = FALSE,
upper_limit = 100,
lower_limit = 0,
trim_years = TRUE,
start_year_trim = 2018,
end_year_trim = 2025
)
Arguments
- df
Data frame in long format, where 1 row corresponds to a specific country, year, and indicator.
- col
column to trim values from. Will be removed before returning the data frame.
- value_col
Column name of column with indicator values. This column will be used to return the results.
- baseline_col
Column name with baseline values. This is used to ensure that trimmed values do not get worst values than baseline.
- trim
logical to indicate if the data should be trimmed between
upper_limit
andlower_limit
.- small_is_best
Logical to identify if a lower value is better than a higher one (e.g. lower obesity in a positive public health outcome, so obesity rate should have small_is_best = TRUE).
- keep_better_values
logical to indicate if "better" values should be kept from
value_col
if they are present. Follows the direction set insmall_is_best
. For instance, if small_is_best is TRUE, thenvalue_col
lower thancol
will be kept.- upper_limit
upper limit at which the indicator should be caped.
- lower_limit
lower_limit limit at which the indicator should be caped.
- trim_years
logical to indicate if years before
start_year_trim
and afterend_year_trim
should be removed- start_year_trim
(integer) year to start trimming from.
- end_year_trim
(integer) year to end trimming.
See also
General scenario functions
add_scenario()
,
calculate_aarc()
,
calculate_aroc()
,
exec_scenario()
,
fill_cols_scenario()
,
flat_extrapolation()
,
get_aarr()
,
get_baseline_value()
,
get_baseline_year()
,
get_last_value()
,
get_last_year_scenario()
,
get_latest_aarc()
,
get_percent_change_aarc()
,
get_target_aarc()
,
remove_unwanted_scenarios()
,
trim_years()