Put hpop_tobacco on SDG trajectory by running a custom version of
scenario_percent_baseline. The custom scenario_percent_baseline
is
taking similar parameters to scenario_percent_baseline
's
percent_change
= -30, baseline_year
= 2010, but values are added to the
start_year
value, rather than the baseline_year
values.
Usage
sdg_hpop_tobacco(
df,
ind_ids = billion_ind_codes("hpop"),
scenario_col = "scenario",
start_year = 2018,
end_year = 2025,
start_year_trim = start_year,
end_year_trim = end_year,
default_scenario = "default",
value_col = "value",
...
)
Arguments
- df
Data frame in long format, where 1 row corresponds to a specific country, year, and indicator.
- ind_ids
Named vector of indicator codes for input indicators to the Billion. Although separate indicator codes can be used than the standard, they must be supplied as a named vector where the names correspond to the output of
billion_ind_codes()
.- scenario_col
Column name of column with scenario identifiers. Useful for calculating contributions on data in long format rather than wide format.
- start_year
Base year for contribution calculation, defaults to 2018.
- end_year
End year(s) for contribution calculation, defaults to 2019 to 2025.
- start_year_trim
(integer) year to start trimming from.
- end_year_trim
(integer) year to end trimming.
- default_scenario
name of the default scenario.
- value_col
Column name of column with indicator values.
- ...
additional parameters to be passed to scenario function
See also
HPOP SDG scenarios
sdg_adult_obese()
,
sdg_alcohol()
,
sdg_child_obese()
,
sdg_child_viol()
,
sdg_devontrack()
,
sdg_fuel()
,
sdg_hpop_sanitation_rural()
,
sdg_hpop_sanitation_urban()
,
sdg_hpop_sanitation()
,
sdg_ipv()
,
sdg_overweight()
,
sdg_pm25()
,
sdg_road()
,
sdg_stunting()
,
sdg_suicide()
,
sdg_transfats()
,
sdg_wasting()
,
sdg_water_rural()
,
sdg_water_urban()
,
sdg_water()