Scenario to add a linear percentage point aimed at quantiles
Source:R/scenarios_target_specific_values.R
scenario_quantile.Rd
scenario_quantile
aims to reach the mean quantile average annual change
(ARC) in which a country is at quantile_year
. The target is based on the
ARC between quantile_year
and baseline_quantile_year
. If ARC is under the mean
of the quantile, it will aim at the mean, and at the higher limit of the
quantile if above the mean.
Usage
scenario_quantile(
df,
n = 5,
value_col = "value",
start_year = 2018,
end_year = 2025,
quantile_year = start_year,
baseline_quantile_year = start_year - 5,
baseline_year = start_year,
scenario_name = glue::glue("quantile_{n}"),
scenario_col = "scenario",
trim = TRUE,
small_is_best = FALSE,
keep_better_values = TRUE,
upper_limit = 100,
lower_limit = 0,
trim_years = TRUE,
start_year_trim = start_year,
end_year_trim = end_year,
ind_ids = billion_ind_codes("all"),
default_scenario = "default"
)
Arguments
- df
Data frame in long format, where 1 row corresponds to a specific country, year, and indicator.
- n
number of quantile to create (5 for quintile, 4 for quartiles, etc.)
- value_col
Column name of column with indicator values.
- start_year
Start year for scenario, defaults to 2018.
- end_year
End year for scenario, defaults to 2025
- quantile_year
year at which the the quantiles ARC should be calculated.
- baseline_quantile_year
baseline year at which the quantiles ARC should be calculated.
- baseline_year
Year from which the scenario is measured. Defaults to
start_year
- scenario_name
Name of the scenario. Defaults to scenario_percent_change_baseline_year
- scenario_col
Column name of column with scenario identifiers. Useful for calculating contributions on data in long format rather than wide format.
- trim
logical to indicate if the data should be trimmed between
upper_limit
andlower_limit
.- small_is_best
Logical to identify if a lower value is better than a higher one (e.g. lower obesity in a positive public health outcome, so obesity rate should have small_is_best = TRUE).
- keep_better_values
logical to indicate if "better" values should be kept from
value_col
if they are present. Follows the direction set insmall_is_best
. For instance, if small_is_best is TRUE, thenvalue_col
lower thancol
will be kept.- upper_limit
limit at which the indicator should be caped. Can take any of "guess", or any numeric.
guess
(default) will take 100 as the limit ifpercent_change
is positive, and 0 if negative.- lower_limit
limit at which the indicator should be caped. Can take any of "guess", or 0 to 100.
guess
(default) will take 0 as the limit ifpercent_change
is positive, and 100 if negative.- trim_years
logical to indicate if years before
start_year_trim
and afterend_year_trim
should be removed- start_year_trim
(integer) year to start trimming from.
- end_year_trim
(integer) year to end trimming.
- ind_ids
Named vector of indicator codes for input indicators to the Billion. Although separate indicator codes can be used than the standard, they must be supplied as a named vector where the names correspond to the output of
billion_ind_codes()
.- default_scenario
name of the default scenario to be used.
Details
Calculates the quantile target, then wraps around
scenario_linear_change_col
to aim at the target.
See also
Comparing scenarios
scenario_bau()
,
scenario_best_in_region()
,
scenario_best_of()