recycle_data()
recycles data between the scenarios present in df
to reduce
size of tables stored. The function wraps around
recycle_data_scenario_single()
for all the scenarios present in the
scenario_col
column.
Usage
recycle_data(
df,
billion = c("hep", "hpop", "uhc"),
value_col = "value",
start_year = 2018,
end_year = 2025,
scenario_col = "scenario",
default_scenario = "default",
scenario_reported_estimated = "routine",
scenario_covid_shock = "covid_shock",
scenario_reference_infilling = "reference_infilling",
include_projection = TRUE,
recycle_campaigns = TRUE,
ind_ids = NULL,
trim_years = TRUE,
start_year_trim = start_year,
end_year_trim = end_year
)
recycle_data_scenario_single(
df,
scenario,
billion = c("hep", "hpop", "uhc"),
value_col = "value",
start_year = 2018,
end_year = 2025,
scenario_col = "scenario",
default_scenario = "default",
scenario_reported_estimated = "routine",
scenario_covid_shock = "covid_shock",
scenario_reference_infilling = "reference_infilling",
include_projection = TRUE,
recycle_campaigns = TRUE,
ind_ids = NULL,
trim_years = FALSE,
start_year_trim = start_year,
end_year_trim = end_year,
assert_data_calculations = TRUE
)
make_default_scenario(
df,
scenario = "default",
billion = c("all", "hep", "hpop", "uhc"),
value_col = "value",
start_year = 2018,
end_year = 2025,
scenario_col = "scenario",
default_scenario = "default",
scenario_reported_estimated = "routine",
scenario_covid_shock = "covid_shock",
scenario_reference_infilling = "reference_infilling",
include_projection = TRUE,
recycle_campaigns = TRUE,
ind_ids = NULL,
trim_years = FALSE,
start_year_trim = start_year,
end_year_trim = end_year,
assert_data_calculations = TRUE
)
Arguments
- df
Data frame in long format, where 1 row corresponds to a specific country, year, and indicator.
- billion
name of billion to recycle data for.
- value_col
Column name of column with indicator values.
- start_year
Base year for contribution calculation, defaults to 2018.
- end_year
End year(s) for contribution calculation, defaults to 2019 to 2025.
- scenario_col
Column name of column with scenario identifiers.
- default_scenario
name of the default scenario.
- scenario_reported_estimated
name of the reported/estimated scenario.
- scenario_covid_shock
name of the scenario with the COVID-19 shock years.
- scenario_reference_infilling
name of the WHO technical programs projections/imputations scenario.
- include_projection
Boolean to include or not projections in recycling
- recycle_campaigns
Boolean to include or not campaigns in recycling
- ind_ids
Named vector of indicator codes for input indicators to the Billion. Although separate indicator codes can be used than the standard, they must be supplied as a named vector where the names correspond to the output of
billion_ind_codes()
.- trim_years
logical to indicate if years before
start_year
and afterend_year
should be removed- start_year_trim
(integer) year to start trimming from.
- end_year_trim
(integer) year to end trimming.
- scenario
name of scenario to recycle for.
- assert_data_calculations
Boolean if true then output data frame will be tested to see if it contains the minimal required data to run the calculations.
Details
make_default_scenario()
wraps around recycle_data_scenario_single()
to
create a default scenario based on the parameters passed to the function.
recycle_data_scenario_single()
reuses values present in the specified
scenarios in default_scenario
, scenario_reported_estimated
,
scenario_covid_shock
and scenario_reference_infilling
for the specified
scenarios.
To do so, it looks at:
values in
default_scenario
but not in the scenario specifiedvalues in
scenario_reported_estimated
orscenario_covid_shock
but not in the scenario specified ordefault_scenario
.values in
scenario_reference_infilling
but not in the scenario specified,scenario_reported_estimated
,scenario_covid_shock
, orscenario_reference_infilling
For more information see:
See also
Functions to recycle the data
remove_recycled_data()