Accelerate dtp3 using a customised version of scenario_fixed_target with the following peculiarities:
baseline_year = 2019;
the 2020 value is kept identical to the 2019 (baseline) value;
the target_year is 2030; and
the scenario is then a straight line to the target_value and target_year
the target values for each country are provided by the technical program.
Usage
accelerate_dtp3(
df,
ind_ids = billion_ind_codes("uhc"),
scenario_col = "scenario",
value_col = "value",
start_year = 2018,
end_year = 2025,
default_scenario = "default",
scenario_name = "acceleration",
...
)
Arguments
- df
Data frame in long format, where 1 row corresponds to a specific country, year, and indicator.
- ind_ids
Named vector of indicator codes for input indicators to the Billion. Although separate indicator codes can be used than the standard, they must be supplied as a named vector where the names correspond to the output of
billion_ind_codes()
.- scenario_col
Column name of column with scenario identifiers. Useful for calculating contributions on data in long format rather than wide format.
- value_col
Name of the column containing indicator value in
df
.- start_year
Year from which the acceleration scenario begins, inclusive.
- end_year
End year(s) for contribution calculation, defaults to 2019 to 2025.
- default_scenario
name of the default scenario.
- scenario_name
name of scenario
- ...
additional parameters to be passed to scenario function
See also
UHC acceleration scenarios
accelerate_anc4()
,
accelerate_art()
,
accelerate_beds()
,
accelerate_bp()
,
accelerate_doctors()
,
accelerate_fh()
,
accelerate_fpg()
,
accelerate_fp()
,
accelerate_hwf()
,
accelerate_itn()
,
accelerate_nurses()
,
accelerate_pneumo()
,
accelerate_tb()
,
accelerate_uhc_sanitation()
,
accelerate_uhc_tobacco()