Skip to contents

Accelerate dtp3 using a customised version of scenario_fixed_target with the following peculiarities:

  • baseline_year = 2019;

  • the 2020 value is kept identical to the 2019 (baseline) value;

  • the target_year is 2030; and

  • the scenario is then a straight line to the target_value and target_year

  • the target values for each country are provided by the technical program.

Usage

accelerate_dtp3(
  df,
  ind_ids = billion_ind_codes("uhc"),
  scenario_col = "scenario",
  value_col = "value",
  start_year = 2018,
  end_year = 2025,
  default_scenario = "default",
  scenario_name = "acceleration",
  ...
)

Arguments

df

Data frame in long format, where 1 row corresponds to a specific country, year, and indicator.

ind_ids

Named vector of indicator codes for input indicators to the Billion. Although separate indicator codes can be used than the standard, they must be supplied as a named vector where the names correspond to the output of billion_ind_codes().

scenario_col

Column name of column with scenario identifiers. Useful for calculating contributions on data in long format rather than wide format.

value_col

Name of the column containing indicator value in df.

start_year

Year from which the acceleration scenario begins, inclusive.

end_year

End year(s) for contribution calculation, defaults to 2019 to 2025.

default_scenario

name of the default scenario.

scenario_name

name of scenario

...

additional parameters to be passed to scenario function